Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Voronoi diagrams are widely used to model disperse systems such as foams, powders, polycrystals and atoms in the classical limit. Voronoi tessellations partition the continuous phase into compartments, or cells, that encompass all space closer to the assigning dispersed object than any other in the system. To account for heterogeneity in object size, weights are applied to avoid unphysical partitioning across non-contacting objects. Power and additive weighting are the most common weighting schemes, wherein power is more computationally tractable but additive weighting correlates more directly with size. In general, the two schemes produce distinct spatial decompositions for any non-monodisperse system. To calibrate the divergent volumetric metrics from the two schemes, and to gain physical insight into their divergence, we compared power and additively weighted Voronoi diagrams of polydisperse ensembles representing physically relevant ranges of polydispersity, density, and overlap. When tested against experimental distributions of gas foams, the results related their divergent power and additively weighted decompositions to the polydispersity of their particle size distributions. Geometric analysis of the Voronoi cells implicated the subpopulation of small objects as the primary contributors to the divergence through their preferential assignment of larger, aspherical power cells relative to their additively weighted counterparts.more » « lessFree, publicly-accessible full text available July 30, 2026
-
Abstract Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genusOrthoflaviviruscontains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target inOrthoflavivirusgenomes.more » « lessFree, publicly-accessible full text available December 1, 2025
-
AbstractLeukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.1 loss either induces acute myeloid leukemia or arrests early B-cell and dendritic-cell development. Although humans with absolute PU.1 deficiency have not been reported, a small cadre of congenital agammaglobulinemia patients with sporadic, inborn PU.1 haploinsufficiency was recently described. To better estimate the penetrance, clinical complications, immunophenotypic features, and malignancy risks of PU.1-mutated agammaglobulinemia (PU.MA), a collection of 134 novel or rare PU.1 variants from publicly available databases, institutional cohorts, previously published reports, and unsolved agammaglobulinemia cases were functionally analyzed. In total, 25 loss-of-function (LOF) variants were identified in 33 heterozygous carriers from 21 kindreds across 13 nations. Of individuals harboring LOF PU.1 variants, 22 were agammaglobulinemic, 5 displayed antibody deficiencies, and 6 were unaffected, indicating an estimated disease penetrance of 81.8% with variable expressivity. In a cluster of patients, disease onset was delayed, sometimes into adulthood. All LOF variants conveyed effects via haploinsufficiency, either by destabilizing PU.1, impeding nuclear localization, or directly interfering with transcription. PU.MA patient immunophenotypes consistently demonstrated B-cell, conventional dendritic-cell, and plasmacytoid dendritic-cell deficiencies. Associated infectious and noninfectious symptoms hewed closely to X-linked agammaglobulinemia and not monogenic dendritic-cell deficiencies. No carriers of LOF PU.1 variants experienced hematologic malignancies. Collectively, in vitro and clinical data indicate heterozygous LOF PU.1 variants undermine humoral immunity but do not convey strong leukemic risks.more » « lessFree, publicly-accessible full text available May 29, 2026
An official website of the United States government
